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Implicit time accurate simulation of unsteady flow
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SUMMARY

Implicit time integration was studied in the context of unsteady shock-boundary layer interaction flow.
With an explicit second-order Runge–Kutta scheme, a reference solution to compare with the implicit
second-order Crank–Nicolson scheme was determined. The time step in the explicit scheme is restricted
by both temporal accuracy as well as stability requirements, whereas in the A-stable implicit scheme, the
time step has to obey temporal resolution requirements and numerical convergence conditions. The
non-linear discrete equations for each time step are solved iteratively by adding a pseudo-time derivative.
The quasi-Newton approach is adopted and the linear systems that arise are approximately solved with
a symmetric block Gauss–Seidel solver. As a guiding principle for properly setting numerical time
integration parameters that yield an efficient time accurate capturing of the solution, the global error
caused by the temporal integration is compared with the error resulting from the spatial discretization.
Focus is on the sensitivity of properties of the solution in relation to the time step. Numerical simulations
show that the time step needed for acceptable accuracy can be considerably larger than the explicit
stability time step; typical ratios range from 20 to 80. At large time steps, convergence problems that are
closely related to a highly complex structure of the basins of attraction of the iterative method may occur.
Copyright © 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Present day computer capabilities are much too small to accurately resolve, for example, all
turbulent scales in flows that occur in practically relevant applications [1]. Typically, such
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flows are time-dependent and a direct numerical simulation (DNS) of the full Navier–Stokes
equations or a large eddy simulation (LES) should be considered. The main emphasis has,
however, been put on simulation of steady flows and a number of significant developments in
the numerical methods have been reported, which enhance the efficiency of these steady flow
calculations. Jameson [2] suggested that it is possible to apply the methods developed for
steady state computations to unsteady flow problems as well. By adding a pseudo-time
derivative to the set of algebraic equations that result after discretization of the temporal and
spatial derivatives, the solution at the next time level corresponds to a steady solution of the
pseudo-time problem.

In the past a lot of work has been done to improve numerical techniques for steady flow
problems with respect to accuracy and computational efficiency. Examples of these develop-
ments are multi-grid methods for steady flows, total variation diminishing (TVD) schemes for
flows with shocks, parallel computing, higher-order spatial discretization schemes, implicit
methods, etc. In the context of unsteady flow simulations using a pseudo-time formulation, a
number of these methods and approaches need to be re-evaluated, as the numerical features of
the unsteady problem usually differ considerably from those desired in relation to steady state
calculations. As an example, rapid multi-grid convergence is more easily achieved in combina-
tion with spatial discretization methods that add sufficient (artificial) dissipation. Such may be
acceptable for steady flow calculations in the Reynolds-averaged Navier–Stokes setting
(RANS) but it is not suitable for DNS or LES. In these cases, one is interested in retaining the
properties of the smaller unsteady structures in the flow and correspondingly turns to spatial
discretizations, which add only a minimal amount of dissipation [3]. A central role is played
by the temporal integration method and in particular by the value of the numerical time step.
On the one hand, one would like this parameter to be as large as possible to proceed quickly
with the evolution of the solution and thereby enhance efficiency. On the other hand, the time
accuracy of the solution demands a sufficiently small time step. A major aspect in any
unsteady simulation is hence the sensitivity of the flow predictions on the size of the time step.
This obviously depends on the specific flow phenomena that one is simulating and monitoring
as well as on the properties of the numerical method adopted for the simulations. In particular,
the global error propagation that arises in a flow problem during a longer time frame is
relevant for actual studies. This illustrates the non-linear accumulation of sources of local
error. We concentrate on this sensitivity issue of predictions for an unsteady fluid flow in
detail.

In this paper we consider implicit time integration schemes, such as the Crank–Nicolson and
Euler backward approaches, to solve the Navier–Stokes equations for an unsteady flow. We
follow the approach of Jameson and reformulate the evolution problem into a steady flow
problem for each time step. Specifically, we concentrate on a DNS of unsteady supersonic
two-dimensional boundary layer flow. The unsteadiness of this flow is caused by the interac-
tion of the boundary layer with shocks that arise in the flow [4]. Also, spontaneous vortex
shedding is observed. These phenomena combine into a rather complex flow, which makes it
an appropriate model for the present study. In addition, this study has relevance for more
complex cases since its numerical methodology also applies to other flows. Simultaneously, this
specific flow has some importance for various situations of practical significance, for example,
transonic flight conditions or a combustion ramjet. The main findings in relation to sensitivity
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of the flow predictions to numerical time step changes that we can establish in relation to the
unsteady shock–boundary layer flow can also be sketched in relation to other canonical flows,
such as flow in a mixing layer and in a regular boundary layer.

The method of lines is adopted to separate the temporal from the spatial discretization.
Straightforward integration in time can be done with explicit methods, such as Runge–Kutta
methods. The main advantages of these methods are their simplicity and their low memory
demands. However, the time step is bounded by numerical stability requirements. For flows
where the dominant physical time scales are comparatively large, e.g. a slowly pitching airfoil,
the stability time step is often too restrictive with respect to the necessary temporal accuracy.
If an appropriate A-stable implicit time integration scheme is applied, there is no such stability
restriction on the time step. As a result of the application of an implicit scheme, a large set of
coupled non-linear equations has to be solved at each time step and the possibility exists to
simulate an unsteady flow with a time step that is larger than the stability time step. In
principle, this system can be solved directly with a Newton–Raphson-like approach, as is done
in Reference [5]. Alternatively, a pseudo-time derivative can be added to create a new set of
differential equations following the approach of Jameson [2]. The stationary solution of these
differential equations corresponds to the desired Navier–Stokes solution at the next time step.
This approach can be interpreted as a quasi-Newton method. In this way all convergence
acceleration techniques developed for steady flow computations can be used like, for example,
multigrid [6,7], in order to accelerate the iteration process in pseudo-time.

With the introduction of an A-stable implicit time integration scheme, the stability require-
ment on the time step vanishes. However, several new questions arise. How large can the time
step actually chosen to be in order to resolve the unsteady solution accurately? How accurate
should the non-linear system, which is related to each time step, be solved and how sensitive
does the prediction of different flow quantities depend on this and other related numerical
parameters? Is it possible to solve the non-linear set of equations at each time step with
arbitrary precision and for all relevant step sizes? These type of questions motivated much of
the research reported here and may help to identify numerical parameter settings that lead to
proper accumulative error–behaviour in the simulation of complex unsteady phenomena with
implicit methods. Likewise, it may contribute to identify criteria that dynamically determine
bounds for the time steps that yield a time accurate simulation. We explicitly remark that in
this paper the focus is on sensitivity of predictions in relation to variations in the time step. An
empirical approach is adopted, which implies analysing a systematic set of numerical parame-
ters, such as the time step. A promising approach for actually dynamically determining the
time step during the course of a simulation, such that the temporal accuracy is maintained, is
based on temporal correlation between the solution at different instants and will be published
elsewhere [van Buuren R, IJzerman WL, Geurts BJ. A dynamic time-step method for accurate
simulation of unsteady flow based on temporal correlation. Journal of Computational Physics
2000 (submitted)]. The temporal correlation criterion may also be interpreted as capturing a
certain (sufficiently large) fraction of the total energy contained in the solution at every point
in time. In this way, a close connection with a proper orthogonal decomposition [8] of the
signal, which is local in time, can be established [9]. Part of judging the suitability of any
specific strategy for determining the time step in a flow simulation is the amount of variation
in certain flow properties due to variations in the time stepping method, e.g., the time step or
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the relaxation method. Since different flow properties have different responses to variations in
time integration parameters we incorporate both mean flow aspects as well as information
from local instantaneous solution components into the analysis.

In the past a lot of work has been done concerning the central questions raised above. In
Reference [7] a two-dimensional turbulent flow around a pitching airfoil is solved. The time
accuracy of these simulations was validated empirically by varying the number of time steps
per period of the pitching frequency. A pseudo-time derivative was added to facilitate the
solution of the non-linear set of equations for each time step and the required convergence
level needed at each pseudo-time step was investigated focusing on some typical flow
quantities. In Reference [6] similar two- and three-dimensional unsteady flow around an airfoil
is considered. An application that is more closely related to the present flow is the DNS
performed in Reference [5] for a spatially evolving three-dimensional turbulent boundary layer.
In this study, an implicit time integration scheme was used to follow the evolution of the flow
in time. The number of time steps per period of the disturbances introduced at the inflow
boundary was 600. A fixed number of iterations were performed for the non-linear system at
each time step. The validation of this number of iterations was done by comparing the
Navier–Stokes solution obtained with 2, 3 and 4 iterations per time step. All these examples
have in common that the time step is related to an external forcing frequency. In the case of
transitional and inhomogeneous turbulent flow smaller spatial flow structures with smaller
characteristic time scales can arise within the flow domain. Since these features of the solution
are dynamically relevant they should be captured by the time step determination approach.
The flow studied here illustrates a case in which time scales that are characteristic of the
‘internal’ physics of the flow are the important factor for the time step in relation to global
error accumulation.

In this paper we simulate a two-dimensional shock–boundary layer interaction flow. The
flow is unsteady due to the specific properties of a steady blowing and suction profile [4] at the
upper boundary of the computational domain, where we prescribe the normal velocity. Of
special importance for this flow is the artificial outflow boundary, which is represented by
characteristic non-reflecting boundary conditions [10] in combination with a buffer domain to
eliminate numerical reflections due to the outflow boundary [4]. For this flow we do not
prescribe any explicit external unsteady flow condition and so another criterion to identify a
suitable time step is necessary. For this purpose we calculate the global error caused by the
spatial discretization and use this to compare with the global error due to the time integration.
The global time integration error not only depends on the magnitude of the time step but also
on the accuracy with which the non-linear system arising at each time step is solved and the
relaxation method that is used to obtain or accelerate convergence. The obvious demand that
the global error decreases if the solution is determined more accurately each time step results
in a set of requirements for these numerical parameters. The specific construction of a stopping
criterion that determines the local accuracy turns out to be a key factor.

The contents of this paper is as follows. In Section 2 we state the governing equations and
the numerical method using the explicit Runge–Kutta scheme. In Section 3 the numerical
results obtained with the explicit method are presented, which are used as a reference solution
for the implicit time integration method introduced in Section 4. Section 5 contains a
discussion of the global error bounds for the implicit time integration scheme. Numerical
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simulations for the implicit scheme are presented and the resulting accuracy is evaluated with
respect to the explicit reference solution. The convergence problems arising at large time steps
are addressed and a connection is made with the classical chaos theory. Finally, in Section 6
conclusions are summarized.

2. GOVERNING EQUATIONS AND NUMERICAL METHOD

In this section we state the equations governing viscous compressible flow and specify the
numerical method incorporating the explicit time integration method.

2.1. Go6erning equations

The governing equations for two-dimensional compressible viscous flow are the Navier–Stokes
equations. In conservation form and Cartesian co-ordinates, they read

(q
(t

+9 ·( fc− fv)=0 (1)

with q= [r, ru, r6, E ]T and where fc and fv denote the convective and viscous fluxes respec-
tively, which are given by
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Æ
Ã
Ã
Ã
È

ru ix r6 iy
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u(E+p)ix 6(E+p)iy
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Ç
Ã
Ã
Ã
É

(2)

where ix and iy are unit vectors in the x- and y-direction respectively, r is the density, E is the
total energy density, and u and 6 are the velocity components in the x- and y-direction
respectively. The heat conductivity k equals

k=
1

Pr(g−1)M�
2

m

Re
(3)

where m is the non-dimensional viscosity, Pr is the Prandtl number, g is the adiabatic gas
constant, M� is the Mach number at infinity, and Re is the Reynolds number to which we
return shortly. Here we use Pr=0.72 and g=1.4 The constitutive equation for the pressure,
p, is given by
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p= (g−1)
�

E−
1
2

r(u2+62)
�

(4)

The temperature T is related to the density r and the pressure p by the perfect gas law

T=gM�
2 p

r
(5)

The dimensionless viscosity m is related to the temperature T by Sutherland’s law

m(T)=
1+C
T+C

T3/2 (6)

where we use C=0.4, which corresponds to a reference temperature T�=276 K. For a
Newtonian fluid such as air, the elements of the shear stress are given by

sxx=
m

Re
�4

3
ux−

2
3
6y
�

, syy=
m

Re
�4

3
6y−

2
3

ux

�
, sxy=syx=

m

Re
(uy+6x) (7)

Here Re= (r�u�d i*)/m� is the reference Reynolds number. The above variables have been
made dimensionless using reference scales, i.e. a reference length d i*, which is taken as the
displacement thickness at the inflow, density r�, velocity u�, temperature T�, pressure and
energy density r�u�2 , viscosity m� and time d i*/u�. The subscript � refers to the free stream
values.

2.2. Spatial discretization

In this section we specify the spatial discretization method. The Navier–Stokes equations (1)
are written in conservation form, where the state vector q contains the densities of the
conserved quantities. Integration of Equation (1) over an arbitrary volume in space shows that
the components of q change only due to a flux through the boundaries of this volume. To solve
Equation (1) we use a finite volume method on a structured grid that computes the flux over
the control volume edges, as in Figure 1

Vi, j

dqi, j

dt
+hi+1/2, j−hi−1/2, j+hi, j+1/2−hi, j−1/2=0 (8)

where Vi, j is the area of the control volume and h the numerical flux vector that is evaluated
at the four boundary segments (i+1/2, j ), etc.

The numerical flux h contains a convective and a viscous part

hi+1/2, j=ci+1/2, j−di+1/2, j (9)

where c is the numerical convective flux and d denotes the numerical viscous flux. The
convective and viscous fluxes are approximated in different ways. For the convective term a
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Figure 1. Control volume for grid point (i, j ). The arrow denotes the normal on the edge.

higher-order TVD scheme is used in order to capture shocks occurring in this flow, while for
the viscous flux we use a conservative second-order central scheme [11], which is suitable for
our purposes. The spatial discretization is described in more detail next.

2.2.1. Con6ecti6e terms. In order to capture shocks correctly we use a higher-order TVD
scheme for the convective flux [12]. The convective flux on the control volume edges is
approximated using the flux difference splitting method of Roe [13], e.g.

ci+1/2, j=
1
2

li+1/2, j
�fc,x(ql)+ fc,x(qr)

fc,y(ql)+ fc,y(qr)
n

·ni+1/2, j−
1
2

li+1/2, j �Ai+1/2, j �(qr−ql) (10)

where fc,x and fc,y denote the x and y components of the convective flux fc in Equation (1),
li+1/2, j is the length of the control volume edge, ni+1/2, j is the unit normal vector on the edge
in the outward direction and the dot denotes the inner product. The appropriate left and right
state vectors [14] are denoted by ql and qr and Ai+1/2, j is the combined flux Jacobi matrix
obtained by taking the Jacobi matrix of the inner product of the normal with the flux vector
on the control volume edge. The absolute value of the flux Jacobi matrix is defined as
�A �=R �L�L, where R and L are right and left eigenvector matrices of A and �L� is a diagonal
matrix containing the absolute values of the eigenvalues of A. As a result, the flux Jacobi
matrix becomes a function of ql, qr and the normal ni+1/2, j, i.e. Ai+1/2, j=A(ql, qr, ni+1/2, j)=
A(qlr, ni+1/2, j), where qlr=qi+1/2,j denotes Roe’s average state vector, which is determined by
calculating the primitive variables according to

ulr=
ul+dur

1+d
, 6lr=

6l+d6r
1+d

, Hlr=
Hl+dHr

1+d
(11)

with d=
rl/rr and H is the specific enthalpy. For a first-order approximation of the flux the
left state vector ql equals qi, j and the right state vector qr equals qi+1,j. To achieve a
higher-order monotonic upwind method we interpolate the state vector with the MUSCL
scheme [14] using the minmod limiter
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ql=qi, j+
1
4

[(1−h) Lim(Dqi−1/2, vDqi+1/2)(1+h) Lim(Dqi+1/2, vDqi−1/2)] (12)

qr=qi+1, j−
1
4

[(1−h) Lim(Dqi+3/2, vDqi+1/2)(1+h) Lim(Dqi+1/2, vDqi+3/2)] (13)

with Dqi+1/2,j= (qi+1,j−qi, j) and the limiter is defined as

Lim(a, b)=
1
2

(sign(a)+sign(b)) min(�a �, �b �) (14)

The parameters h and v must satisfy

−15h51; 15v5
3−h

1−h
(15)

to ensure monotonicity [15]. For the special choice h=1
3, the scheme is third-order accurate in

smooth regions. In this paper we will use h=1
3 and v=3

2. This method has been applied
successfully before both to steady flow around airfoils [12,16] and to time-dependent turbulent
flow in a mixing layer at high Mach numbers, including unsteady shocks [17].

2.2.2. Viscous terms. The viscous flux is approximated with a second-order accurate conserva-
tive scheme as defined in Reference [11]. Since the viscous flux contains second-order spatial
derivatives, the standard approach is to first find an appropriate approximation of the
first-order derivatives on the control volume edges in Figure 1. The first-order derivative in a
point in the middle of a grid cell can be approximated by applying Gauss’ theorem to the
surrounding grid cell. Consider, for example, ux

ux:
1

�V�
&

V
ux dV=

1
�V�

&
S

unx dS (16)

where �V� is the volume of the grid cell, nx is the x component of the normal on the grid cell
edge and S is the boundary of the volume. Applying Gauss’ theorem once more on the control
volume with the above definition of the first derivatives results in a second-order accurate
conservative approximation of the viscous flux.

2.3. Boundary conditions

Figure 2 presents a sketch of the computational domain. The solid wall is represented by an
adiabatic no-slip boundary. At the inflow boundary we impose the Blasius solution of the
compressible boundary layer equations as described in Reference [4]. The inflow boundary can
be split into two parts. The first part is the region near the solid wall, where the flow is
subsonic due to the no-slip boundary condition. Therefore, one numerical boundary condition
is necessary to obtain a well-posed problem. In total we extrapolate the density from the
interior and impose the pressure and the streamwise and normal velocity components. The
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Figure 2. Computational domain.

flow in the second part of the inflow boundary, away from the solid wall, is supersonic and
convection-dominated and all characteristic enter the computational domain so that all flow
quantities can be imposed.

For the outflow boundary we use a special buffer technique as developed in Reference [4].
With this approach the disturbances in all the solution components are gradually reduced to
zero within the buffer domain. The buffer acts on all components of the state vector and can
be described by the following formula:

q=qref+z0 (x)(q̃−qref) (17)

where z0 is the effective buffer function that contains a specific buffer function z, which will be
outlined below, q̃ is the solution after the flux update and before applying the buffer technique
and qref is the reference solution towards which the solution in the buffer is damped. In this
paper we use the Blasius solution at the outflow position as the reference solution. The buffer
function, z, is specified by

z= (1−C1xb
2)
�

1−
1−eC2xb

2

1−eC2

�
(18)

where C1 and C2 are tuning parameters. The co-ordinate xb is the buffer co-ordinate defined
by

xb=
x−xs

xe−xs

(19)

where xs and xe are the x-co-ordinates at the start and end of the buffer domain respectively.
The effect of the buffer region for a certain flow configuration depends on the number of times
that buffer function is applied. Hence, if the grid is refined, the buffer function is applied more
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frequently if one uses an explicit time integration scheme. In order to make the buffer
procedure independent of the number of time steps, we take the effective buffer value z0 as

z0 =z
C3Dt (20)

where the constant C3 is added as a tuning parameter. In Reference [4] an extensive
investigation has been performed on the tuning of the constants in Equations (18) and (20),
which leads to the choice of C1=0.005, C2=20 and C3=26.4. The ‘optimized’ buffer as
described has also been applied to free shear layers and performs equally well, without further
adjustments in the tuning parameters.

The upper boundary acts as a free stream boundary, where a time-independent blowing and
suction profile is prescribed by imposing the normal velocity. Along this artificial boundary
not all dependent variables are specified by physical boundary conditions and hence a
numerical boundary condition is added. In the region where suction is applied, three
characteristics leave the computational domain and one characteristic enters the domain.
Therefore, three variables are determined by extrapolation from the interior domain and the
fourth variable is determined by the prescribed normal velocity. In the region where blowing
is applied, three characteristics enter the computational domain and one characteristic leaves
the domain. Again, the normal velocity is prescribed and the remaining variables are
determined by coupling the incoming and outgoing characteristics with a locally one-
dimensional (LODI) non-reflecting boundary condition as defined in References [4,10]. This
method is based on the characteristics of inviscid flow. For outgoing characteristics, informa-
tion can be obtained from the interior domain. For incoming characteristics, no physical
conditions except for the normal velocity are known and therefore the amplitude of the
incoming waves is kept constant in time, thus minimizing reflections at the boundary.

2.4. Explicit time integration

The Navier–Stokes equations (1) can be written in a semi-discrete form as

dqi, j

dt
+ fi, j(q)=0 (21)

where f(q) denotes the total numerical flux defined in Section 2.2. For the explicit time
integration we use a second-order accurate, explicit four-stage compact storage Runge–Kutta
scheme, given by

q (k)=q (0)+akDtf(q (k−1)) (k=1, 2, 3, 4) (22)

with q (0)=q(t), q (4)=q(t+Dt) and the coefficients a1=
1
4, a2=

1
3, a3=

1
2 and a4=1. The time

step of the explicit scheme is bounded for stability reasons, and for the control volume Vi, j the
local stability time step equals
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Dti, j=
1

1
Dt i, j

c +
1

Dt i, j
v

(23)

where Dt i, j
c is the local time step limitation related to the convective flux and analogously Dt i, j

v

is related to the viscous flux. The convective time step limitation is given by

Dt i, j
c =

s �Vi, j �
max(li+1/2, jli+1/2, j,li−1/2, jli−1/2, j)+max(li, j+1/2li, j+1/2,li, j−1/2li, j−1/2)

(24)

where s is the Courant–Friedrich–Lewy (CFL) number and the ls are the maximal absolute
values of the eigenvalues of the flux Jacobi matrix on the corresponding control volume edges.
The local viscous time step limitation is given by

Dt i, j
v =

s �Vi, j �2
a(�li+1/2, j �2+ �li, j+1/2�2) (25)

where a=4
3m. In this paper we will consider a time-dependent flow and the time step Dt is

taken equal to the minimum of all local stability time steps, Dti, j.

3. EXPLICIT NUMERICAL REFERENCE RESULTS

In this section we present some simulation results for the reference test case described in
Reference [4] using the Runge–Kutta scheme as specified above. As an initial condition we use
the compressible Blasius boundary layer solution. For the present test case we take the Mach
number equal to M�=1.3 and the Reynolds number equal to Re=500 based on the inflow
displacement thickness. The length and height of the computational domain and the length of
the buffer domain are respectively Lx=500, Ly=30 and Lb=50. We use an orthogonal grid
with 193×65 points in the streamwise and normal direction respectively. The grid is uniform
in the x-direction while it is stretched in the y-direction using a rational stretching function
with a maximal stretching ratio of Dymax/Dymin=8.8. The blowing and suction profile
described in the previous section is displayed in Figure 3. The specific choice of the parameters
a, d, w and f influence the shock strength and position as well as the temporal behaviour of
the flow (for more details see Reference [4]). To obtain an unsteady flow with sufficiently
strong shocks suitable for the present study we take a=0.12, d=36, w=300 and tan(F)=
0.0033. With these settings the flow shows a strong interaction between the boundary layer and
the shocks that occur in the flow [4]. Also, spontaneous vortex shedding is observed. Data
sampling starts after the flow becomes statistically stationary. The transient process that leads
to this state is illustrated in Figure 4, where we plot the shock sensor defined by

S(t)=max
)(p
(x

(t)
) Dx
p�

(26)
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Figure 3. Blowing and suction profile of the normal velocity, 6 at the free-stream boundary.

Figure 4. Shock sensor as a function of time. The vertical line represents the beginning of the data
sampling interval which lies well within the statistically stationary region.

This is a measure for the maximum shock strength in the flow. The temporal behaviour of the
shock sensor indicates that after a certain period the flow becomes statistically stationary. As
an initial condition for the sampling period throughout this paper we take the solution
obtained at t=10000. The sampling is performed in the interval T from t=10000 to
t=11000 in which period we determine time averaged and root-mean-square (r.m.s.) flow
quantities. We used several CFL numbers, s, varying from s=0.375 to s=2.0. For the latter,
the flow becomes unstable in accordance with the stability limit of the Runge–Kutta scheme.
We observed that the L2-norm of the difference in the solution at t=11000 obtained with
values of s=1.5 and smaller is of the order 10−4 and therefore we may safely take s=1.5 for
the explicit reference simulation, which represents a good level of accuracy to define the point
of reference. In Figure 5 the time-averaged Mach field is plotted. The presence of two shocks
and a separation bubble can clearly be observed. The solid line in Figure 6 represents the mean
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Figure 5. Time averaged Mach field over the sampling period T. Supersonic flow (M\1) is shown with
dotted contour lines and subsonic flow with solid contour lines.

Figure 6. Mean skin friction for the explicit method. The solid line represents the skin friction on the
original grid (193×65), the dashed line on the fine grid (385×129).

skin friction, which displays the existence of a region of separated flow. Additionally, the
instantaneous streamwise velocity components at two locations in the flow are plotted in
Figures 7 and 8 (solid lines). The first location (U1) is in the boundary layer just in front of
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Figure 7. Instantaneous solution U1 obtained with the explicit time integration for the original grid
(solid line) and the fine grid (dashed line).

Figure 8. Instantaneous solution U2 obtained with the explicit time integration for the original grid
(solid line), and the fine grid (dashed line).
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the separation bubbled The second location (U2) is within the separation bubble itself. We
observe that the temporal behaviour at the second location is more complex than that at the
first location and it may be expected that the sensitivity of the solution at the two locations to
changes in, for example, the time step also differs considerably. Therefore, we will use both
locations to study the effect of large time steps in the next sections.

4. IMPLICIT TIME INTEGRATION METHOD

In the previous section, a second-order accurate explicit Runge–Kutta method was used for
the time integration. The time step needed for a time accurate simulation may be significantly
larger than the stability time step for explicit methods given by Equation (23). In order to
circumvent the stability requirements on the time step, we adopt an implicit time integration
method. In order to determine the accuracy of the solution, we compare the implicit solution
with the explicit reference solution for different types of flow quantities, i.e. mean, r.m.s. and
instantaneous solution properties, which display quite different dependencies on variations of
numerical parameters. In this section, we define the implicit time integration method.

4.1. Time integration and implicit approximation of the flux

In Section 2.4 the Navier–Stokes equations were written in a semi-discrete form in Equation
(21). Applying the second-order Crank–Nicolson scheme to the temporal derivative in
Equation (21) yields

qi, j
n+1+

1
2

Dtfi, j(qn+1)=qi, j
n −

1
2

Dtfi, j(qn) (27)

where the superscript denotes the time level and the time step is represented by Dt. Rewriting
Equation (27) yields the following non-linear system:

Fi, j(qn+1)=gi, j(qn) (28)

where the right-hand side gi, j depends on quantities known from the previous time level and
is therefore fixed during the calculation of qn+1. Several aspects of this approach do not
depend on the implicit Crank–Nicolson time integration used here. In fact, all implicit
multi-step methods give rise to the general non-linear form F(qn+1)=g(qn, qn-1, . . . ). In
principle, Equation (28) can be solved with Newton iteration but this is not always computa-
tionally efficient. We use a method introduced in Reference [2], where a pseudo-time is added
to Equation (28), which yields

d6i, j

dt
+Fi, j(6)=gi, j (29)
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The resulting steady state solution of Equation (29) corresponds to the desired solution qn+1

of Equation (28). To solve Equation (29) we use the Euler backward scheme in pseudo-time as
was done in Reference [12], where it was shown that the use of Euler backward was
computationally more efficient to obtain a steady state than the explicit Runge–Kutta scheme
defined in Section 2.4. Although the Euler backward is only a first-order accurate scheme, this
choice has no effect on the second-order accuracy of the solution qn+1 of Equation (28).
Applying the Euler backward to Equation (29), the following system has to be solved for each
pseudo-time level:

� I
Dti, j

+
(F
(6

(6k)
�
D6i, j=gi, j−Fi, j(6k) (30)

where D6=6k+1−6k, the superscript k denotes the pseudo-time level and (F/(6 is a symbolic
representation of the numerical Jacobi matrix of F defined in Equation (28). For infinite Dt

and exact numerical representation of the Jacobi matrix, the iteration scheme (30) corresponds
to the exact Newton iteration with quadratic convergence if the iterative solution is sufficiently
close to the fixed point. However, it is not possible to obtain and invert the exact Jacobi matrix
at reasonable cost. Therefore, we approximate the Jacobi matrix as in References [12,18]. The
pseudo-time step Dt can be viewed as a relaxation parameter, which for small values of Dt

increases the convergence range of the semi-Newton iteration.
The numerical system that has to be solved at each time step is defined in Equation (30). A

computationally more efficient method is possible if the left-hand side of Equation (30) is
evaluated only once per time step and not after every pseudo-time step as would be required
from Equation (30). The number of pseudo-iterations necessary to obtain the steady state with
a desired accuracy does not increase due to this adjustment [19]. This indicates that this
additional approximation of the Jacobi matrix has no appreciable influence for unsteady
simulations. Applying this approximation to the numerical system in Equation (30), we get

AD6i, j=gi, j−Fi, j(6k) (31)

where A is now a fixed matrix and only the right-hand side needs updating after every
pseudo-time step. The speed-up factor obtained with this approximation compared with the
case where the Jacobi matrix is updated every pseudo-time step is about 2.3.

Similar to the flux, we distinguish the convective part of the Jacobi matrix from its viscous
part. The convective part of the Jacobi matrix is approximated using a first-order upwind
approach. The viscous part is approximated with a second-order central scheme. Due to the
five-point stencil of Roe’s scheme in the two-dimensional case [13], we get a sparse Jacobi
matrix with five bands of non-zero 4×4 matrices. The five blocks of the convective flux for
a grid point (i, j ) are given by

Di, j
c =Ai−1/2, j

+ −Ai+1/2, j
− +Ai, j−1/2

+ −Ai, j+1/2
−

Ni, j
c =Ai, j+1/2

−
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Si, j
c = −Ai, j−1/2

+

Ei, j
c =Ai+1/2, j

−

Wi, j
c = −Ai−1/2, j

+ (32)

where D c, N c, S c, E c and W c denote the diagonal, north, south, east and west contribution to
the convective part of the flux. The matrices A+ and A− are determined by the positive and
negative eigenvalues of the flux Jacobi matrix [20].

The viscous flux defined in Section 2.2.2 uses a nine-point stencil. In order to stay within the
five-point stencil used for the convective part of the numerical Jacobi matrix, the cross-
derivatives are neglected. Consider a transformation from physical to computational space

(x, y)� (j, h) (33)

Applying this transformation to, for example, the stress term sxx in Equation (7) gives

sxx=
4
3

m

Re
(jxuj+hxuh)−

2
3

m

Re
(jyuj+hyuh) (34)

where jx, etc., are geometric terms arising from the transformation of the derivatives.
Switching to conservative variables and neglecting the terms that would cerate cross-derivatives
of j and h after additional differentiation with respect to x in Equation (1) yields

sxx:
4
3

m

Re
jx
�ru

r

�
j

−
2
3

m

Re
jy
�r6

r

�
j

(35)

Linearization around the conservative variables and summing the results over all four edges of
the control volume gives the corresponding viscous contribution to the 4×4 flux Jacobi
matrices. The total Jacobi matrix can be obtained by the summation of the convective and
viscous blocks multiplied by a factor 1

2Dt arising from the time integration and the addition of
the diagonal blocks I/Dt due to the pseudo-time iteration.

4.2. Implicit treatment of boundary conditions

All boundaries of the computational domain are treated implicitly. For the solid wall and the
inflow boundary, the implicit approach is straightforward. At the free-stream boundary the
implicit treatment of the conservative quantities r, ru and E is also straightforward. However,
the implicit treatment of the buffer domain and the blowing and suction is less trivial and will
be outlined next.

4.2.1. Buffer domain. The buffer technique described in Section 2.3 was developed originally for
the explicit time integration scheme described in Section 2.4. For this explicit scheme, the
buffer is applied after every stage in the Runge–Kutta scheme. As mentioned before, the
solution in the buffer depends on the number of times the buffer is applied. If we apply the
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buffer explicitly in the implicit scheme it is not clear whether this should be done after every
time step, after every pseudo-time step or even within the solution process of the linear system.
To circumvent the difficulties and arbitrariness arising from an explicit application of the
buffer function in the implicit scheme we base the implicit treatment of the buffer on a
generalization and redefinition of the total flux in the buffer domain. Applying the Euler
forward scheme to Equation (21) followed by the application of the buffer results in a
discretized evolution equation. Taking the limit of Dt to zero of this set of algebraic equations
yields an equivalent differential equation in which an additional term is added to the flux in
Equation (1) in the buffer domain. These steps are considered in more detail next. Define the
buffer by

j=
!1 if xBxb

z0 (x) if x]xb

(36)

If we would use the Euler forward method we can write the solution on the next time step in
two phases

6n+1=qi, j
n −Dtfi, j(qn)

qi, j
n+1=q*i, j+j(6n+1−q*i, j)=qi, j

n −Dt
! 1
Dt

(j−1)(q*i, j−qi, j
n )+jfi, j(qn)

"

qi, j

n −Dtf0 i, j(qn)

(37)

where qi, j* is the reference solution and f0 i, j(q) is defined by

f0 i, j(q)=
! 1
Dt

(j−1)(q*i, j−qi, j)+jfi, j(q)
"

(38)

Taking the limit Dt to zero in Equation (37) shows that there exists a consistent differential
equation for every region of the computational domain

Á
Ã
Ã
Í
Ã
Ã
Ä

dq
dt

+ f(q)=0, xBxb

dq
dt

+a(q*−q)+ f(q)=0, xb5xBxe

q=q*, x=xe

(39)

where a=C3 log(z) with z defined in Section 2.3. Notice that the value of a goes to infinity
near the outflow boundary. Therefore, we do not treat Equation (39) directly but use the
formulation of the new flux in Equation (38) instead. This constitutes no limitation on the
overall accuracy since the buffer domain is only used to damp the reflections near the outflow
boundary. The construction of the new Jacobi matrix is straightforward since the blocks in
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Equation (32) corresponding to the buffer domain only have to be multiplied with j and a new
diagonal contribution has to be added according to the new flux definition in Equation (38).

4.2.2. Blowing and suction. Implicit treatment of the blowing and suction boundary is done in
a way similar to the treatment of the buffer domain. The blowing and suction specifies the
vertical velocity. Applying the Euler forward method for r6 gives

(r6)i, j*
n+1=6ir i, j*

n+1= (r6)i, j*
n −Dt6i f i, j*

(r) (qn) (40)

where 6i is the imposed velocity, which is independent of time, j * is the j index at the upper
boundary and the superscript r denotes the flux vector of the mass equation (1).

4.3. Linear sol6er

At each pseudo-time level a linear system has to be solved as a result of the discretization in
Equation (30). Using the block notation as defined above, the system for each grid point (i, j )
can be written as

�
N+S+E+W+

I
Dti, j

+D
�
D6i, j=gi, j−Fi, j(6k) (41)

where Dti, j is the time step obtained by the same stability criterion as described in Section 2.4
but now applied on the pseudo-time level. In order to solve Equation (41) the same
symmetrical Gauss–Seidel method is used as in Reference [12]. A priori it is not clear whether
the linear system should be solved to machine accuracy. Here the residual is not reduced to
machine accuracy but instead only two sweeps are performed at each pseudo-time level, which
is found more efficient with respect to CPU time.

5. IMPLICIT TIME INTEGRATION RESULTS

In this section we will present the numerical results obtained with the implicit time integration
method defined in the previous section. The main focus will be on the relation between the
accuracy of the solution obtained with the implicit method and the choice of the implicit time
step.

5.1. Error bounds

To empirically identify a suitable accuracy time step, Dtacc, we need a criterion for the accuracy
in order to determine whether a certain time step is acceptable or not. To this purpose we
introduce E, which represents a measure for the global accumulated error over the sampling
period T, as described in Section 3. We will define norms to specify E in more detail shortly.
We require the global errors to be comparable, i.e.

E(Dt)�E(Dx) (42)
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which states that the global error due to the time integration should be smaller than or
maximally comparable with the global error due to the spatial discretization errors. In this
way, the total global error remains comparable with the spatial discretization error and is not
essentially increased by the temporal integration. There is no a priori reason to work with
simulations in which either one of the global error terms is much smaller than the other in this
philosophy. The main guidance for selecting a proper Dt is to have an acceptable accumulation
of local errors in the non-linear evolution of the flow. At least Dt should be sufficiently small
to keep E(Dt) bounded. In addition, the total global error should remain at the same level as
that due to the spatial discretization. In fact, errors arising from spatial discretization are
usually much more difficult to reduce in view of memory requirements and computational
effort. For this reason E(Dx) forms a direct and pragmatic bound for the global error. The
reduction of E(Dt) by reducing Dt is computationally somewhat simpler and it is comparably
straightforward to reduce accumulated global errors due to time integration below the level of
global errors due to spatial discretization. Typically, we found in the present study that
reducing E(Dt) to a level about five to ten times smaller than E(Dx) is suitable. For other flows
the findings differ slightly to which we return momentarily.

The next step is to determine appropriate norms for the errors defined in Equation (42). For
this purpose, the numerical results for the explicit run on the original grid are considered as the
reference solutions. We define the following general formula for the norm of the error of the
averaged and r.m.s. quantities

��c ��= 1
cnorm

! 1
LxLy

& Lx

0

& Ly

0

(c−cref)2 dx dy
"1/2

(43)

where Lx and Ly are the lengths of the computational domain, c is a general notation for the
quantity that one wants to observe, the subscript ‘ref’ stands for reference value obtained with
the explicit solver and the subscript ‘norm’ stands for a normalization value. This is added in
order to render all norms roughly of comparable magnitude which facilitates the comparison
of norms of different quantities. For the instantaneous quantities that are monitored as the
solution as a function of time at a fixed location, we define

��c ��= 1
cnorm

!1
T
& T

0

(c−cref)2 dt
"1/2

(44)

where T is the total sampling time. For the specific case of the skin friction, the normalization
value cnorm is defined as cnorm=max(cref), which leads to

��c ��= 1
max(cref)

!& Lx

0

(c−cref)2 dx
"1/2

(45)

In this paper we will use the skin friction, the r.m.s. of U and the instantaneous velocity U
measured at two different locations in the computation domain to monitor the accuracy of the
simulation. Other quantities have been considered as well but do not lead to different
conclusions and will not be incorporated in this presentation.
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In order to determine the norms related to the global spatial discretization error E(Dx) we
perform a simulation on a refined grid with the explicit method. We use a fourth-order
interpolation method to obtain the fine grid with 385×129 points from the reference grid with
193×65 points. The initial condition at t=10000 and the Blasius solution at the inflow and
outflow boundary are obtained with the same interpolation method. In Figure 6 we have
plotted the mean skin friction coefficient corresponding to the sampling period T for the
explicit method on the original and the fine grid. The results are in good agreement, which
indicates that the mean quantities are sufficiently well resolved on the original grid. In Figures
7 and 8 we have plotted the velocity U in two different locations in the computational domain.
In the smooth region (U1) of the flow, the results compare well, the main difference is in the
amplitude. For the velocity U2 only the large structures seem to agree. On the fine grid,
additional higher frequencies in time are resolved and the reference grid appears somewhat too
coarse to resolve all features. However, for calculations with the implicit method in which we
focus on the sensitivity of the solution to changes in Dt, the reference setting is more than
adequate.

5.2. Comparison with explicit results

In this section we study the effect of the magnitude of the time step on the global error norms
E. In the global errors we use the suggestive notations Dt and Dx to distinguish between the
two types of error sources. However, the global error due to the time stepping method not only
depends on the magnitude of the time step but also on the local tolerance level E that is a
measure of the local accuracy with which the solution of the non-linear system in Equation
(30) for each time step is obtained. Also the relaxation parameter Dt may have some effect.
The global error E on a given grid at least depends on three parameters: the time step Dt, the
local tolerance level E and the relaxation parameter Dt. To complete the definition of the
iteration scheme a definition of the stopping criterion is required. For this purpose we
introduce f(6), which yields the stopping criterion f(6)Be. Our total numerical method is
now desired to satisfy the obvious requirement that the global accumulative errors should
decrease if the solution is determined with a higher local accuracy at each time step. A more
accurate solution can be obtained, for example, by decreasing the time step or decreasing e.
Shortly we will define the function f(6) but first a more precise formulation of the require-
ments on the global error are given

(1) E(Dt1, e, Dt)5E(Dt2, e, Dt), Dt15Dt2, ÖDt

(2) E(Dt, e1, Dt)5E(Dt, e2, Dt), e15e2, ÖDt

(3) E(Dt, e, Dt1):E(Dt, e, Dt2), Dt1"Dt2

(4) f(6) sensitive to the initial solution (46)

Our eventual aim is to identify values for Dt, e and Dt in combination with a good stopping
criterion f, such that the numerical predictions respond to changes in these parameters in the
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above manner. In this way a ‘predictable’ error–behaviour can be realized though a proper
setting of the numerical parameters. If Dt1 is smaller than Dt2, the truncation error for the time
integration method should also be smaller. Therefore, requirement (1) states that the global
error E should decrease if the time step decreases. Secondly, it appears reasonable that the
global error should not increase if one puts more efforts in solving the solution each time step.
So, requirement (2) says that if one solves the non-linear system more accurately, the obtained
solution is also better in the sense that the global error is smaller. Requirement (3) is somewhat
less transparent. Since we do not solve system (30) to machine accuracy, the solution may still
depend on the relaxation method. For our specific method the relaxation parameter is Dt, but
one can also think of other relaxation methods, like, e.g. multi-grid. Sensitivity on the
relaxation method should be small. Finally, f(6) should be sensitive to a better initial guess of
the solution, which means that if an initial solution in pseudo-time is close to the numerical
solution of Equation (28), fewer iterations should be needed compared with the case where the
difference between the initial solution and the numerical solutions is larger. Although the
global error demands in Equation (46) seem very reasonable, it is not trivial to find a f(6)
such that all four requirements are satisfied. A few examples of functions f(6) that we
considered are

f1(6k)=
��F(6k)−g ��2

��g ��2
; f2(6k)=

��F(6k)−g ��2
��Dtf0 (qn)��2

; f3(6k)=
��D6k��2
��D61��2

(47)

where the superscript k denotes the pseudo-time level. Computations and analysis indicate that
f1 does not give rise to simulations with a global error that satisfies requirement (1). This may
be explained by a Taylor expansion for small time steps. The denominator scales with Dt while
the numerator scales with a constant plus Dt. To remove this Dt dependence f2 is introduced.
Although the first requirement is satisfied when using f2, it turns out to be very sensitive to
the relaxation parameter Dt and is therefore not a suitable candidate. The third measure, f3,
is not sensitive to a better initial estimate of the solution. However, computations indicate that
requirements (1) and (2) are satisfied, and in the limit for Dt�0 and Dt��, requirement (3)
is satisfied. For the intermediate range of Dt it is found that requirement (3) is approximately
satisfied but the results are not totally independent of Dt. In the sequel we will use f3.

The time step for the explicit reference run is fixed at Dt=0.2. For the simulations with the
implicit time integration scheme we perform calculations for a range of Dt values. In Figures
9–12 the norms defined in Equations (43) and (44) are plotted for various quantities as a
function of the local accuracy e=10−k. The required global error relation stated in Equation
(42) is represented in these figures by a solid horizontal line corresponding in this case to a
suggestive value of E(Dx)/10. Basically, we can now refer to a setting of the numerical time
integration parameters as appropriate if E(Dt) lies below this line and the opposite applies if
E(Dt) lies above this ‘spatial error reference line’. As an example, the figures show that for
almost all quantities and time steps e=10−1 is too large, whereas typically the accumulated
time integration error responds acceptably if the solution at every time step is determined with
a sufficiently small residue of e=10−2 or smaller. To illustrate this in more detail, in Figure
13 the instantaneous solution U1 is plotted for Dt=2 and e=10−1. Although the main trend
in time is captured correctly, some additional incorrect frequencies are introduced which
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Figure 9. Global error for the skin friction as a function of the local error e=10−k for various time
steps.

Figure 10. Global error for the r.m.s. U as a function of the local error e=10−k for various time steps.
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Figure 11. Global error for the instantaneous velocity U1 as a function of the local error e=10−k for
various time steps.

Figure 12. Global error for the instantaneous velocity U2 as a function of the local error e=10−k for
various time steps.
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Figure 13. Instantaneous solution U1 as a function of time for the implicit scheme with Dt=2 and
e=10−1 (dashed) and the explicit reference solution (solid).

clearly indicates that e is too large. If e=10-2 almost excellent agreement is obtained, which
illustrates the significant drop in the norm shown in Figure 11. In fact, for e510−2 the first
three requirements in (46) were verified. The dashed lines in Figures 9–12 correspond to the
solution with arbitrarily small e. Clearly, the global error reaches an asymptotic value
corresponding to solutions that only contain the truncation error of the time integration
scheme. For larger Dt it is not possible to obtain a converged solution for arbitrary e each time
step. The threshold values of e for Dt=4, Dt=8 and Dt=16 are in the order of e=10−4,
e=10−3 and e=10−2 respectively. This aspect will be addressed in more detail in the next
section.

The sensitivity of mean flow properties is shown to be quite small. For the skin friction,
Figure 9 shows that for all time steps the choice e=10−2 results in an error smaller than 0.1
per cent. We also monitored their mean quantities like, for example, the mean Mach field or
the mean pressure on the solid wall. The global errors for these quantities are even smaller
than the global error for the skin friction. Hence, for mean quantities it seems that the implicit
time step can be chosen up to about eighty times larger than the explicit stability times step.

The precise ratio between E(Dt) and E(Dx) that is still acceptable for global time accuracy
is not sharply defined and is somewhat influenced by the precise norm that is used to identify
a measure for the error. Consider, for instance, the quantity U1 at time step Dt=4 and
e=10−2. In Figure 11 the error lies slightly above the spatial error reference line. However,
in Figure 14 the solution is seen to almost coincide with the solution found from application
of the Runge–Kutta scheme. Finally, in Figures 15–18 we show the quantities U1 and U2 for
the time steps Dt=8 and Dt=16 for the highest attainable accuracy e in these cases. The
figures show that for Dt=8 the quantity U1 is resolved quite well. For Dt=16 the solution
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Figure 14. Instantaneous solution U1 as a function of time for the implicit scheme with Dt=4 and
e=10−2 (dashed) and the explicit reference solution (solid).

Figure 15. Instantaneous solution U1 as a function of time for the implicit scheme with Dt=8 and
e=10−3 (dashed) and the explicit reference solution (solid).
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Figure 16. Instantaneous solution U1 as a function of time for the implicit scheme with Dt=16 and
e=10−2 (dashed) and the explicit reference solution (solid).

Figure 17. Instantaneous solution U2 as a function of time for the implicit scheme with Dt=8 and
e=10−3 (dashed) and the explicit reference solution (solid).
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Figure 18. Instantaneous solution U2 as a function of time for the implicit scheme with Dt=16 and
e=10−2 (dashed) and the explicit reference solution (solid).

starts to deviate more but is still quite similar to the explicit solution. The difference between
the explicit solution and the implicit solutions is larger for the quantity U2. At Dt=8 the
solutions start to deviate even more for Dt=16, where the main trends are still captured but
the deviation of the solution increased considerably. Hence, the global error criterion (42)
represents a robust and useful guidance for identifying suitable time steps, even for instanta-
neous quantities. To be on the safe side, a choice of Dt=4 is close to Dtacc for all instantaneous
quantities. For the instantaneous quantities the accuracy time step is therefore a factor four
times smaller than for the mean quantities but compared with the stability time step it is still
about a factor 20 times larger.

We also investigated the sensitivity of the flow predictions to changes in Dt, for conventional
boundary layer flow, which does not involve far field pressure gradients to influence the flow
[21]. In the case of two-dimensional boundary layer flow, the development of the flow is much
less abrupt, both in space and time. The transition from laminar to complex unsteady
behaviour is well described for Dt about 20–40 times larger than the explicit stability time step
for instantaneous flow quantities. The situation is reversed if we turn to flow in a mixing layer
[22]. In this flow the explicit stability time step is typically much closer to the accuracy time
step and consequently the speed up arising from implicit time integration is much smaller. In
both these flows we noticed that relation (42) is a useful way to classify suitable numerical
parameter settings that give rise to ‘predictable’ error behaviour.
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5.3. Dynamical beha6iour for large time steps

In the previous subsection it was noted that for large time steps it is not possible to obtain a
solution over the total sampling period for arbitrary small e (see Figures 9–12). The
convergence does not necessarily break down in the first time step for each Dt and e but may
occur somewhere within the sampling period. This indicates that the convergence breakdown
depends not only on the time step and stopping criterion but also on the initial condition and
accumulated effects.

To study the effect of the time step on the convergence behaviour we perform one time step
for a range of Dt values with initial conditions taken as the solution obtained at t=10000 and
the CFLt number for the pseudo-time step set to 1.0, which is slightly smaller than the CFL
number used for the explicit reference simulation. For time steps up to Dt=6 no convergence
problems are encountered and machine accuracy can be obtained. The convergence behaviour
of the numerical system (31) in pseudo-time can be visualized with phase portraits by plotting
the values of two characteristic quantities at every pseudo-time level. The value of D6 should
converge to zero and therefore two locations are taken where the absolute value of D6 is
m-aximum. In Figures 19–21 we have plotted such phase portraits of the density for Dt=6,
Dt=8 and Dt=16.5. In order to visualize the behaviour, the density at iteration level k=1000
is subtracted.

The dynamical structure for these three time steps in quite different. In the case of Dt=6 the
dynamic convergence behaviour resembles that of a converging spiral associated with a stable
stationary solution of Equation (29). Compared with the convergence behaviour at smaller
time steps, which are all straight lines, a structural difference of the dynamics around the fixed

Figure 19. Phase portrait of two typical values of r for Dt=6.
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Figure 20. Phase portrait of two typical values of r for Dt=8.

Figure 21. Phase portrait of two typical values of r for Dt=16.5.
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point already occurs even thought the fixed point of Equation (28) is still an attractor and the
proper solution is obtained. For Dt=8 the convergence of the pseudo-time iterations stalls and
no fixed point solution is obtained, but there appears to exist some kind of limit cycle. We
investigated numerically that this limit cycle is an attractor. Further investigations indicate that
the convergence depends sensitively on the initial condition in a rather complex way, to which
we return in a moment.

For Dt=16.5 an exact period four solution in pseudo-time is obtained. There seems to be
a connection with classical chaos theory, where, e.g. a fixed point solution may become
unstable and bifurcate into a period two solution, which again may bifurcate into a period four
solution, etc., as a function of some bifurcation parameter. In our case we first investigate
whether Dt is a proper bifurcation parameter and more systematically study the various types
of possible convergence stall. To examine the long t behaviour we define the winding number
by

G=
1

2p(N+1−k*)
%
N

k=k*

ck (48)

where k* (�1) is an iteration level at which the solution, roughly speaking, lies on the
attractor, N (�k*) is a sufficiently large iteration level and ck is the angle between two
consecutive points in the phase portrait with respect to the centre of the limit cycle. For a
range of Dt between Dt=6 and Dt=100, we observe that 0.215G50.3. For some Dt we find
almost exactly G=0.25, which corresponds to a period four solution as in the case of
Dt=16.5. However, no period two solution (G=0.5) is found, which indicates that no direct
link to classical chaos theory is apparent or that Dt is not the proper bifurcation parameter.

There is a striking analogy between these findings and recent work of Yee and Sweby
[23,24], who made a study of the asymptotic behaviour of time integration methods for steady
state problems. In the present context we also use a time integration scheme to obtain a steady
state, which connects the present work with the work of Yee and Sweby if we consider the
pseudo-time step as the bifurcation parameter. To confirm this observation we repeat the
simulation for Dt=16.5 (period for solution) with CFLt=1.2. In Figure 22 it is shown that
for CFLt=1.2 the iteration process does not converge to the period four solution but to a
higher periodic orbit, which resembles the bifurcation path to chaos as in Yee and Sweby. The
sensitivity on the CFLt number observed for the case of Dt=8 may be related to the presence
of the basins of attraction for spurious and real solutions. Yee and Sweby observe that for
certain time discretizations and fixed-point solutions of a differential equation fragmented
basin of attraction exists. This agrees with the results for the simulations at Dt=8.

Additionally we examined the influence of the temporal integration of Equation (21) on the
convergence problems described above and adopted the Euler backward scheme which is a
dissipative scheme in contrast to the Crank–Nicolson scheme, which is non-dissipative. For
large time steps the same convergence problems occurred, which indicates that this phe-
nomenon is not caused by the specific properties of the Crank–Nicolson scheme but is quite
likely to be more general.
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Figure 22. Phase portrait of two typical values of r for Dt=16.5; for CFL=1 (�) and CFL=1.2 (× ).

6. CONCLUSIONS

In this paper we have performed a DNS of a complex two-dimensional unsteady flow over a
flat plate with an explicit and an implicit time integration scheme. In order to avoid numerical
reflections at the outflow boundary we used a special buffer technique developed by Wasistho
et al. [4]. By analogy with the treatment needed for the explicit Euler forward scheme we have
shown that the application of the buffer technique is consistent with a modified differential
equation in the buffer domain. This facilitates the implicit treatment of the buffer significantly
and only requires a flux redefinition. For the implicit time integration scheme we used the
second-order Crank–Nicolson scheme, which results in a large set of coupled non-linear
algebraic equations that have to be solved each time step. To solve this system we added a
pseudo-time derivative and used the Euler backward scheme in pseudo-time to obtain the
stationary solution. In principle, Newton iteration prescribes that the Jacobi matrix has to be
determined every pseudo-time step. However, we found that the Jacobi matrix during a time
step can be kept constant, which results in a speed-up factor of about 2.3.

Contrary to explicit time integration methods, the time step for implicit schemes such as
Crank–Nicolson is bounded by accuracy requirements alone. How to find acceptable Dt and
even how to identify the suitability of a certain Dt is a complicated matter. As a guideline for
the allowable global error due to the time integration scheme we found that an estimate of the
global spatial discretization error is an appropriate measure. We formulated requirements for
the global time integration errors that correlate the time step, local accuracy of each time step
and the relaxation method. If the numerical parameters are properly specified the error–
behaviour complies with these requirements and the global error decreases if the solution is
determined more accurately each time step. Computations showed that if the requirements are
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obeyed proper solutions of the flow problem are obtained. It appeared that the stability time
step is too restrictive with respect to accuracy and a considerable speed-up is, in principle,
possible using implicit methods.

Convergence problems were encountered for large time steps. Yee and Sweby [23,24] have
shown that the steady state solution can bifurcate into chaos if a time integration scheme is
used to obtain the steady state. In our case, this corresponds to the pseudo-time integration
that we used to solve the non-linear system of equations to obtain the solution at the next time
step. Numerical simulations confirm the sensitive dependence on the pseudo-time step.

Finally, we observe that, although no special attention has been paid to convergence
acceleration techniques, the current implementation of the implicit scheme is already competi-
tive with the explicit scheme with respect to CPU time. Since the number of pseudo-iterations
for large time steps is considerable we expect that the application of multi-grid techniques will
result in a significant speed-up. This is a topic of future research, in particular in the context
of transitional and turbulent flow in three spatial dimensions.
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